A Flexible Scheduling Framework (for Linux):
Supporting Multiple Programming Models
with Arbitrary Semantics

Presented by Noah Watkins

Systems Research Lab
UC Santa Cruz

* University of Kansas Adapted from RTLWSO09 slides



Overview

Growing trend toward single systems with wide
range of semantics

Linux is used in many application areas, and is
attractive for new research and development

Priority-based systems have a difficult time
supporting multiple, competing semantics
— Performance management

Non-priority based scheduling requires general
treatment of system components

Proxy Execution: General treatment of CC



iple Semantics

Mult

Single System,




...But why use A ?

v

Economic pressure to select cheap solutions

— Need strong justification for custom systems

— Hence increasing popularity of Linux as a standard
platform.

Cost and complexity justify multiple applications
sharing HW platforms

— Multi-core and MHz increases make sharing attractive

With multiple applications, satisfying all their
constraints becomes complex



Application Semantic Explosion

. TV, Video, Games,
Responsiveness Productivity
QoS
&
Latency,
Coordination Experimental
Scheduling

Denial of Service,
Distributed Coordination



Performance Management

= Computations use resources, and this affects their behavior

= Managing performance requires managing many system components
= CPU (thread scheduling), Disk scheduler
= Software-based resources (e.g. Buffer Cache)

= One application has no competition

"= [gnoring system-level computations

Application
e
OS

SRL Research Symposium, 21 October 2009 6



Performance Management

= Real systems have multiple applications, with a range of semantics
= Computations compete with each other for shared resources

= CPU, Disk, Network
= SW-based (e.g. buffer cache)

» Managing the performance of the system requires that the interaction
among computations be managed

S
> W“MMM

SRL Research Symposium, 21 October 2009 7



Performance Management

= Multiple applications with multiple semantics share many resources
= Servers multiplex client connections with competing policies (e.g. QoS)
= Context-borrowing computations under hard-wired scheduling policies

* Managing interaction among computations requires managing semantic/
policy conflicts

QoS 1 Admin QoS 3

QoS 2 QoS 2

w Buffer Cache E

SRL Research Symposium, 21 October 2009 8

uS
OS

DIL-IR '
Tasklet, etc...



Goal: Precise Computation Control —
It’s Easy, Right?

High Priority

e0o b s
CLIEE e la B
o Yaros GomleHaps YouTube WikpadiaNews 09 posir

Groddt - v o oo

Redditors often comment on their surprise about posts' being up or down voted. How do they know? search reddit

’ I
[reee— G [

- - Balloon parents OWN3D on CNN by their own Kid. "you guys said, we did it for the show” i

Low Priorit —
T love what dchan did about that Kid fiyng n that balloan news I

‘ S Loz s |

I

Mod of "the friendiiest redai," r/marjuana goes batshit on redditors, banning them for speaking out against L

him, caling them "Musliim faggots” - Can an admin intervene? Create your own reddit

] Deor Neiahoor, why 50 parancid? [ was just settng up & new tripod (no camera....unt now. (c) 9 15 1T

hen  talk on the phane 1 nave the uncontolable urge to wander around aimlesly, generaly repeating the whatever you do.
same walking pattern without even thinking about it. Do others? Why is

. dor'tclick here.
The Onion can do a It of mocking i three sentences.

More than 80 Israeli students have announced their refusal to serve in the Israeli miltary: “the occupation is a

violent, racist, inhumane, illegal, undemocratic, immoral and n extreme condition that presents 2 mortal

danger to both peoples”

When confronted by a predator, some arimas fght, others run whe  few hide hoping notto be noticed. The
wheel spider of Namib flexes s legs into a wheel and throws fself down the side of 2 dune. et s ac

"IAMAN expert on selecting and preparing wild edible plants (and critters too). I'm the man behind the popular website, "EatTheWeeds.” AMA”

Inteli] IDEA Open Sourced

SRL Research Symposium, 21 October 2009 9



Semantic Mappings: A Developers Job

. Arbitrary
Set of Semantics Wtics
E Semantic
Mapping

Scheduling

Static
Priority

SRL Research Symposium, 21 October 2009 10



Semantic Mappings

= Application developers map their semantics onto priority-based PM
= Complex mappings are difficult to create, understand, model, and verify
= Developers have no other choice

= Priority is ubiquitous and well-understood

= Application developers lack knowledge and resources to create new
thread scheduler

us Static-priority PM [+MW]

OS I e
SWR1 Buffer Cache SWR2
CPU (scheduling)

SRL Research Symposium, 21 October 2009 11

Hard-IRQ,

Soft-IRQ,
Tasklet, etc...
(in PREEMPT_RT)




Semantic Mapping: Problems Masked

Logical representation of system
semantics

Appl IRQ1,2 App 2,3,4 IRQ2,7 Everything else...

Reality: complex mappings, priority overlaps

. Low Prio

l I l l l l \ )
| | Y

Hard/Soft-IRQs Application 1 App 2, 3,4 Everything else...

Tasklets, etc...
(in CONFIG_PREEMPT_RT)

SRL Research Symposium, 21 October 2009 12



Semantic Integration

= So how do we manage shared resources with many concurrently existing
semantics?

= A resource is generally built in support of an assumed system semantics
= E.g. priority-aware implementations
= Semaphores commonly manage access to shared resource

= Integrated with scheduling via Pl protocol

SSH App Monitoring

us Static-priority PM [+MW]

App

OS
Hard-IRQ, HW Resource Concurrency Control

Soft-IRQ,
Tasklet, etc... CPU (scheduling) SWR1

(in PREEMPT_RT)

Buffer Cache SWR2

SRL Research Symposium, 21 October 2009



Solution: Directly Represent
Scheduling Semantics

* Group Scheduling
— A particular solution
— Hierarchic scheduling framework at KU

* Represent semantics directly

— No mappings, application scheduling state directly
fuels schedulers

e Relationship between application semantics
explicitly represented by the hierarchy
structure



Direct Representation: Frame Progress

= Multiple pipelines processing frames
= Each pipeline has different performance characteristics
= Goal: Pipelines finish processing frames in sync

= Can be done with user-space concurrency control

= Locks are used for their scheduling affects
SEQ SEQ

¥ v DY ¥ Y Y
T T2 T3 { T4 T5 T6 ]

= Instead, directly represent the pipeline progress (application state) within
the scheduler
= Clear, unambiguous, easily modeled implementation




Integration Difficulty

Directly representing semantics requires
general integration of system
components

Appl IRQ1,2 App 2,3,4 IRQ2,7 Everything else...

S

0S
Concurrency Control
Soft-IRQ,

SRL Research Symposium, 21 October 2009

Tasklet, etc...
(in PREEMPT_RT)




Concurrency Control Integration

Directly representing semantics requires
general integration of system
components

.

Appl IRQ1,2 App 2,3,4 IRQ2,7 Everything else...

S

OS

Concurrency Control

Thread Scheduler Miﬂmﬁw

SRL Research Symposium, 21 October 2009

Soft-IRQ,

Tasklet, etc...
(in PREEMPT_RT)




Concurrency Control Integration

Common approaches assume scheduling
semantics

— Priority inheritance
— BWI

— A semaphore hard-codes this assumption into its
implementation

Directly represented scheduling semantics may
use arbitrary representations

Hard-coded assumptions don’t apply
— No mapping, no priority



Integration Observations

Blocking relations between computations are
independent of semantics

— Task-2 viocked on LOCK-1 owned by Task-1

The scheduling hierarchy completely specifies
system policy

Blocking relations in the context of system policy
have semantic relevance (e.g. Pl strategy)

Directly representing blocking relations in the
scheduler supports semantically independent
resolution



Solution: Directly Represent Blocking
Relationships (Proxy Execution)

System Policy
Query blocking relations at

scheduling time

o
Task 1\ Task 2 Task 3 Task 5

\ Task 4 Semaphores publish
Task 5

relations

T1 — L1 -+ T3 \
L3 —— TS5
/

T2 —— L2 > T4 Blocking Relations

SRL Research Symposium, 21 October 2009 20



Proxy Execution Challenges

 Complexity in time and space

— Efficient maintenance/representation of blocking
relations

e Scheduler requirements

— Scalable schedulers use set of relations indirectly

* SMP challenges

— Relations that span CPUs require special
treatment



Evaluation

 [t’s difficult to prove a negative
— |s the solution general (enough)?

 What type of wild semantics can we
implement in the framework?

* Performance implications

— For another talk



Some Results

Static-priority, CFS, EDF
Generalized event-based data-flow

— Scheduler is aware of socket-based event delivery
— PTIDES

Guided execution
— Deterministic execution for reproducible CC testing

* Lock-step scheduling plans

Application-specific progress-based scheduling
— Multiple balanced pipelines



Conclusion

* Continually looking for interesting semantics
to implement

e Currently implemented in 2.6.29-rtX

Questions?



